Abstract

This paper considers factors which influence the visual motion estimation of a sensor system designed for visually mapping the internal surface of pipework using omnidirectional lenses. In particular, a systematic investigation of the error caused by a non-uniform 2-D spatial distribution of features on the resultant estimate of camera pose is presented. The effect of non-uniformity is known to cause issue and is commonly mitigated using techniques, such as bucketing; however, a rigorous analysis of this problem has not been carried out in the literature. The pipe’s inner surface tends to be uniform and texture poor driving the need to understand and quantify the feature matching process. A simulation environment is described in which the investigation was conducted in a controlled manner. Pose error and uncertainty is considered as a function of the number of correspondences and feature coverage pattern in the form of contiguous and equiangular coverage around a circular image acquired by a fisheye lens. It is established that beyond 16 feature matches between the images, that coverage is the most influential variable, with the equiangular coverage pattern leading to a greater rate of reduction in pose error with increasing coverage. The application of the results of the simulation to a real world data set is also provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.