Abstract

In our previous in vitro research and also in laying hen production, attempts were made to minimise ammonia emissions in poultry houses with the use of Deodoric® biopreparation. The objective of the present research was to evaluate the influence of the Deodoric® on ammonia (NH3) emission and turkey growth performance in a semi-industrial production system. Significant differences in NH3 emission (p-value < 0.001), body weight (p-value < 0.001) and relative humidity (p-value < 0.001) were observed between the control group (C) and the experimental group (E) where Deodoric® was applied. In group C, an increase in ammonia concentration in air could have contributed to a decrease in the body weight of turkeys, but the above correlation was not observed in group E. In the control group, a relatively strong correlation between NH3 emission and temperature (p-value = 0.0009; r = 0.74) and moderate correlations between NH3 emission vs. relative humidity (p-value = 0.01; r = 0.59), air speed (p-value = 0.015; r = 0.60) and cooling (p-value = 0.005; r = 0.66) were noted. Studied correlations were not observed in group E. The preparation did not affect microbial levels in manure or body samples. Throughout the experiment, significant differences in the number of mesophilic bacteria (for the model: F = 46.14, p-value = 0.09; for mesophilic microorganisms: F = 3.29, p-value = 0.045) and Campylobacter spp. (for the model: F = 24.96, p-value = 0.008; for Campylobacter spp.: F = 0.25, p-value = 0.64) were not observed between group C and group E. The administration of Deodoric® to manure decreased NH3 concentration in the air and increased weight gains in the experimental group of turkeys relative to group C. Preparation may be applied in poultry farms to improve poultry farming conditions.

Highlights

  • Agricultural production, including farming and animal breeding, can be a source of high emission of odorous gases in air

  • Deodoric® during animal rearing can be directly applied to the litter, as demonstrated by previous studies performed under laboratory conditions and by the tests conducted in poultry houses in a pilot plant

  • Ammonia emission is an important determinant of housing conditions, and it may have a greater impact on animal welfare than stocking density [67]

Read more

Summary

Introduction

Agricultural production, including farming and animal breeding, can be a source of high emission of odorous gases in air. Both animal-related and odorous gases are closely related to manure production. Manure is responsible for greenhouse gases and odorous gases [1]. Ketones, sulphur compounds and nitrogen compounds, including ammonia. Ammonia (NH3 ) emission is most significantly correlated with the emission of odorous gases [2,3]. Livestock manures contain N in both organic (proteins, amino polysaccharides, and nucleic acids) and inorganic forms. The conversion of organic nitrogen to NH3 is mediated by a host of enzymes produced by heterotrophic microbes [4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.