Abstract

The Z-pinch plasma device is a type of plasma confinement system that uses electrical current to generate a magnetic field which compresses a current-carrying wire. In a previous proof-of-principle study, we demonstrated that in the interaction of a single wire with a pulsed current, the generated Electro-Thermo-Mechanical (ETM) instability in the solid phase acts as a seeding mechanism for the later developed instabilities observed in the plasma phase. In this study, the influence of the geometrical characteristics, such as length and thickness of the load-wire, on the generation of the ETM instability are investigated. Finite element multiphysics-multiphase simulations starting from the solid state are coupled with Magneto-Hydro-Dynamics (MHD) simulations to study the solid to plasma phase transition and the matter’s dynamics. The numerical results of the wire expansion dynamics prior to plasma formation are validated by experimental results from a modified Fraunhofer diffraction diagnostic, while in the plasma phase the simulated plasma dynamics is validated by shadowgraphic and interferometric experimental results. The numerical and experimental results demonstrate a satisfactory agreement for the wire expansion dynamics and the growth rate of the developed instabilities, for varying wire thickness and length.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.