Abstract

Abstract Russell, I. C., Aprahamian, M. W., Barry, J., Davidson, I. C., Fiske, P., Ibbotson, A. T., Kennedy, R. J., Maclean, J. C., Moore, A., Otero, J., Potter, E. C. E., and Todd, C. D. 2012. The influence of the freshwater environment and the biological characteristics of Atlantic salmon smolts on their subsequent marine survival. – ICES Journal of Marine Science, 69: 1563–1573. Atlantic salmon have declined markedly in the past 20–30 years throughout their range. Much of the focus for this decline has been on increased mortality during the marine phase of the life cycle. However, marine mortality does not operate independently of factors acting in freshwater and the biological characteristics of smolts migrating to sea. Over recent decades, juvenile salmon in many rivers have grown faster and migrated to sea at a younger age, so have been typically smaller than earlier. This has shortened the generation time for many individuals and may dampen the impact of increased marine mortality, assuming that expected higher in-river survival prior to smolting is not outweighed by increased mortality of smaller smolts at sea. Over the same period, smolt run-timing across the geographic range has been earlier, at an average rate of almost 3 d per decade. This has given rise to growing concerns about smolts potentially missing the optimum environmental migration “window”, the timing of which may also be changing. Contaminants and other factors operating in freshwater also impact smolt quality with adverse consequences for their physiological readiness for life at sea. Given that managers have very limited ability to influence the broad scale factors limiting salmon survival at sea, it is vital that freshwater habitats are managed to both maximize the smolt output and to minimize the impact of factors acting in freshwater that may compromise salmon once they migrate to sea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.