Abstract

The projected contribution of the Greenland ice sheet to sea-level rise in response to future warming relies upon the state of the present-day ice sheet, and one of the main contributors to uncertainties in projections is due to uncertainties in the initial state of the simulated ice sheet. A previous study showed that including the inter-annual climate variability in an idealized ice sheet model leads to an increased mass loss rate, but the effect on the Greenland ice sheet is not known. Here we present a study using the PISM model to quantify the influence of inter-annual variability in climate forcing on the Greenland ice sheet. We construct an ensemble of climate-forcing fields that account for inter-annual variability in temperature using reanalysis data products from RACMO and NOAA-CIRES, and we investigate the steady state and the sensitivity of the simulated Greenland ice sheet under these different scenarios.We find that the steady state volume decreases by 0.24-0.38% when forced with a variable temperature forcing compared to a constant temperature forcing, corresponding to 21.7±5.0 mm of sea level rise, and the response to abrupt warming is 0.03-0.21 mm SLE a-1 higher depending on climate scenario. The northern basins are particularly sensitive with a change in volume of 1.2-0.9%. Our results emphasize the importance of including climate variability in projections of future mass loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.