Abstract

Iron is a common impurity in magnesium alloys, and is acknowledged to accelerate Mg corrosion, contributing to Mg’s poor corrosion resistance. However, an atomistic understanding of this acceleration effect is still incomplete. Here we use Density Functional Theory simulations performed with the Quantum Espresso package to investigate several Fe/Mg models, calculating the associated work functions, atomic charges, and H and Fe absorption energies. Compared with a pure Mg slab, we find that Fe’s existence increases the work function and decreases the H adsorption energy. Furthermore, a general trend is observed that the Fe absorption energy decreases with increasing interaction between Fe atoms on the Mg substrate. Based on these results, a mechanism based on charge redistribution is put forward to explain how Fe accelerates the corrosion of Mg. Our findings provide insight into Mg’s corrosion process at the atomic level that might inform future measures to prevent corrosion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.