Abstract

Foot sole cooling increases vestibular-evoked balance responses, but less is known about foot dorsum temperature alterations. The purpose was to determine whether decreasing cutaneous receptor sensitivity via foot dorsum cooling modulates the vestibular control of balance. Eighteen participants (9 males; 9 females) stood quietly on a force plate with feet together, eyes closed, and head rotated leftward during 4, 90-s trials (2 control; 2 cooled) of continuous electrical vestibular stimulation (EVS). Icepacks placed on the dorsum of both feet for 15min induced cooling and remained throughout the EVS trials. Monofilament testing was performed at multiple locations before and after cooling to determine tactile detection thresholds. T-type thermocouples monitored skin temperature over the tibialis anterior, soleus, foot dorsum and arch of the right leg. Vestibular-evoked balance responses were characterized using time (cumulant density) and frequency (coherence and gain) domain analyses to determine the relationship between the EVS input and motor output (anteroposterior force-AP force; right medial gastrocnemius electromyography-MG EMG). Skin temperature of the foot dorsum and arch decreased ~ 70 and 15%, respectively during cooling (p < 0.05), but was unaltered at other locations (p ≥ 0.10). Detection thresholds for the foot dorsum increased following cooling (p < 0.05). Surprisingly, cooling reduced EVS-AP force and EVS-MG EMG coherence and gain at multiple frequencies, and peak-to-peak amplitude compared to control (p < 0.05). Our results indicate that vestibular-driven balance responses are reduced following foot dorsum cooling, likely owing to alterations in cutaneous mechanoreceptor sensitivity and subsequent alterations in the transformation of vestibular cues for balance control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.