Abstract

When cells and large subcellular structures suffer a change in volume or internal structure, their light-scattering properties are normally altered. These optical-conformation changes are potential sources of information about conformation and processes which alter it. Classical light-scattering theory for spherical particles is used to determine how the transmittance or extinction of a cell suspension should respond when such a conformational change occurs and the measurements are made with a conventional photometer. This extends an earlier study of transmittances measured with an “ideal” photometer. The photocell of an ideal instrument collects only the directly transmitted light. In a conventional instrument it also collects the light scattered at small angles, which is usually most of the scattered light. Extinction (optical density, absorbance) of suspensions of spherical cells was computed for several photometer designs. It is found that γ, the angle of acceptance of the photocell, has a significant influence on the extent and even the nature of the photometric response to a given conformational change. Earlier, it was shown that a decrease in cell volume or increase in internal structure will increase extinction for cells of many sizes. Now it is found that a large γ-value increases these effects. An approach to the interpretation of transmitted light fluxes in terms of theoretical predictions is outlined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.