Abstract

Electrostatic repulsive interaction forces between charged spherical colloidal particles at an oil-water interface are numerically studied by solving the standard three-dimensional Poisson-Nernst-Planck model. We directly compute the electrostatic force on a finite-size spherical particle and our results are applicable to all inter-particle distances without distinguishing short ranges and long ranges. The model successfully captures the scaling relationship of the force and the separation distance (d) between two charged particles at both short ranges (exponential dependence) and long ranges (∼d(-4)). The model also bridges these two ranges and provides quantitative information in the middle range. In addition, by assuming that there is a small residual electric charge at the particle-oil interface, the standard model is capable of quantitatively predicting the repulsive particle-particle interaction force over a large range of the separation distance between two particles. The favorable agreement between experiments and theoretical predictions also leads one to conclude that the standard model adequately describes the particle-particle interactions trapped at the oil-water interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.