Abstract

AbstractNano-Fe/carbon fiber/ Low-density polyethylene (LDPE) composites were prepared by melt compounding. The electromagnetic shielding properties of nano-Fe/CF/LDPE composites as a function of nano-Fe mass content were investigated. The data of DC electrical conductivity evidence percolation behavior of the composites, and percolation threshold descends with the increase of nano- Fe. When the CF/LDPE composites reach the percolation threshold (pCF=0.10), “double percolation” appears in the nano-Fe/ CF/LDPE composites as continuously adding nano-Fe into the CF/LDPE composites, and the percolation threshold of the “double percolation” is 0.10 mass fraction of CF and 0.08 mass fraction of nano-Fe, which result in at least 103 orders of magnitude greater than that of CF/LDPE composites. The data of Initial DC permeability μr, coercivity Hc, saturation magnetization Ms and residual magnetization Mr of nano-Fe/CF/LDPE composites at the magnetic field intensity between -2500 G and 2500 G enhance with increasing addition of nano-Fe. The value of relative permeability decreases as the loading of nano-Fe is increased from 0.04 to 0.19 mass fraction in frequency ranges of 300 KHz-100 MHz. The EMI SE in frequency ranges of 300KHz-100MHz increase with the addition of nano-Fe, and mechanism of electromagnetic shield for nano-Fe/CF/LDPE composites is compound shielding mechanism with reflection loss R and absorption loss A. Absorption loss A increases significantly with increasing addition of nano-Fe from 0.04 to 0.19 mass fraction, and increasing trend of reflection loss R slow down as mass fraction of the fillers reach percolation threshold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.