Abstract

The bound unoccupied electronic state structure of an Ir(111)/graphene surface covered by differently sized and spaced Ir clusters was investigated by means of two-photon photoemission spectroscopy. The cluster lattice was found to affect the image potential states of the substrate to a surprisingly large extent. This effect can be related to the influence of the cluster lattice on the screening of the image state electron trapped in front of the surface. The symmetric arrangement of Ir clusters considerably reduces the lateral extension of graphene areas with a homogeneous local work function, and from a certain minimum area size, the excitation of an electron to a stable state in a Coulomb-like potential is not possible anymore. Furthermore, lateral confinement effects could be observed due to the decreasing extension of bare graphene areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.