Abstract

The dynamics of a one-dimensional ionospheric irregularity interacting with the magnetosphere is studied by numerical simulation. The polarization electric field produced by charge separation within the irregularity propagates along magnetic field lines with the Alfvén velocity V A and drives polarizational and field-aligned currents in the magnetosphere. Their values and localization are controlled by motion and deformation of the irregularity resulting from its electrostatic coupling to the background ionosphere. The pattern of the field-aligned currents varies with time and depends primarily on gradients of the polarization electric field. The latter is controlled by the ambient electric field, diffusion, recombination process, intensity of the initial perturbation, etc. Feedback effect of the magnetospheric conductance on the development of the irregularity is examined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.