Abstract

The surface reconstructions which occur when a parallel-sided gap opens up between the (111) planes of silicon are computed using the ab initio total-energy and lattice dynamics method of Sankey and Niklewski (1989). This allows the time-evolution of the surface structures to be observed. The shuffle and glide terminations are compared, and found to differ in energy by 0.17 eV/(surface atom), with the shuffle termination having lower energy. The Haneman (2 × 1) buckled row reconstruction is found to occur at a certain critical gap d c = 0.46 nm, and acts as a precursor for the Pandey (2 × 1) π-bonded chain model, which occurs at larger gaps. Charge-density maps are shown, and the results related to cleavage in real crystals. The surface energy of (2 × 1) reconstructed Si(111) is calculated to be 1340 erg/cm 2 (1.07 eV per surface atom) in good agreement with experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.