Abstract

Most work in literature on condensation in tubes has been done for smooth tubes in the horizontal and vertical configurations. Recent experimental works with condensation at different inclination angles showed that the heat transfer characteristics were a function of inclination angle. These works were limited to heat transfer and pressure drop measurements with visual observations. However, no work has been done on measuring the void fractions during condensation at different inclination angles. The purpose of this study was to measure void fractions and heat transfer coefficients during condensation for tube inclinations ranging from vertical downwards (−90°) to vertical upwards (90°) at a saturation temperature of 40 °C. Measurements were taken in an experimental set-up in which condensation occurred on the inside of a test section. The test section was a circular tube with an inner diameter of 8.38 mm and a heat transfer length of 1.488. The refrigerant used was R134a, and the void fractions were measured using two capacitive void fraction sensors. Mass fluxes ranging from 100 to 400 kg/m2 s and vapour qualities ranging from 10–90% were considered. Heat transfer coefficients were also compared with void fractions. It was found that at combinations of low mass fluxes and vapour qualities, void fraction and heat transfer were significantly affected by changes in inclination angle. Generally, void fractions and heat transfer coefficients increased with downward inclination angles with an optimum angle between −10° and −30° (downward flow). At some intermediate mass flux and vapour quality conditions, the void fraction and heat transfer coefficients were observed to be independent of the inclination angle despite changes in the prevailing flow patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.