Abstract

The synergistic influence between H(2)O(2) and H(2) on the corrosion of SIMFUEL (simulated spent nuclear fuel) has been studied in solutions with and without added HCO(3)(-)/CO(3)(2-). The response of the surface to increasing concentrations of added H(2)O(2) was monitored by measuring the corrosion potential in either Ar or Ar/H(2)-purged solutions. Using X-ray photoelectron spectroscopy it was shown that the extent of surface oxidation (U(V) + U(VI) content) was directly related to the corrosion potential. Variations in corrosion potential with time, redox conditions, HCO(3)(-)/CO(3)(2-) concentration, and convective conditions showed that surface oxidation induced by H(2)O(2) could be reversed by reaction with H(2), the latter reaction occurring dominantly on the noble metal particles in the SIMFUEL. For sufficiently large H(2)O(2) concentrations, the influence of H(2) was overwhelmed and irreversible oxidation of the surface to U(VI) occurred. Subsequently, corrosion was controlled by the chemical dissolution rate of this U(VI) layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.