Abstract
Welding is one of the most widely used metal joining techniques. However, improper technique and handling may lead to weld defects. Cracks that occur during the exploitation of the welded joints in places of increased stress concentration are called fatigue cracks. In our previous study, we suggested that lowering the stress concentration in the zone of the weld face may prevent surface cracks in butt-welded joints. Here, we further examined how welding heat input and external factors can be controlled to minimize the occurrence of fatigue cracks on welded joints. The fatigue cracks analyzed in this study occurred during the exploitation and are a consequence of the increased stress concentration at the toe of the weld. We performed twenty-four welding experiments comprising the following four welding conditions: torch angle, number of cover passes, length of electrode stick-out, and shielding gas (two environments were used). Stress concentration factors and heat input were determined via experimental data. The results suggested that higher heat input is associated with a lower risk of developing fatigue cracks. Thus, we concluded that fatigue cracks could be minimized by increasing the arc voltage and current while also reducing the welding speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.