Abstract

Friction factors and velocity profiles in turbulent drag reduction can be compared to Newtonian fluid turbulence when the shear viscosity at the wall shear rate is used for the Reynolds number and the local shear viscosity is used for the non-dimensional wall distance. On this basis, an apparent maximum drag reduction asymptote is found which is independent of Reynolds number and type of drag reducing additive. However, no shear viscosity is able to account for the difference between the measured Reynolds stress and the Reynolds stress calculated from the mean velocity profile (the Reynolds stress deficit). If the appropriate local viscosity to use with the velocity fluctuation correlations includes an elongational component, the problem can be resolved. Taking the maximum drag reduction asymptote as a non-Newtonian flow, with this effective viscosity, leads to agreement with the concept of an asymptote only when the solvent viscosity is used in the non-dimensional wall distance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.