Abstract
AbstractThe potential advantage of plasma treated polyethylene (PEP) in mechanical properties was studied in this research. Recycled carbon fiber (CF) was the filler used for this hand layup technique. During fabrication, 4–14 wt% CF was incorporated into PEP and the results showed the impact of both filler and plasma treatment in enhancing the mechanical strength of polymer composites. Tensile results improved from 17.51 to 22.51 MPa in the polyethylene (PE) matrix. Scanning electron microscope (SEM) results showed untreated PE composites with fiber and matrix breakages as also voids reducing the compatibility of the PE/CF phases. The maximum flexural property of 25.5 MPa was observed in 10 wt% CF/PE treated with plasma. This combination was tried with different fabrication conditions in a temperature range of 180–220°C and time duration of 20–30 min. It was clearly seen that CF/PE combinations at a temperature of 180°C and time duration of 20 min had maximum tensile and flexural strength. The optimization using Taguchi method proved the significance of CF content in enhancing the mechanical properties. It also observed better tensile strength, flexural strength properties with 10 wt% CF, 180°C temperature, 20 min time from the results. Surface images of this condition showed more dispersed CF in the PE than other combinations due to optimum temperature and time duration during fabrication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.