Abstract

In France, the annual volume of dredged sediments is significantly increasing, which has become a real environmental problem. Nevertheless, these sediments can be used beneficially as supplementary cementing material. On the other hand, external sulfate attack is one of the most aggressive causes of deterioration that affects the durability of concrete structures. This study focused on the valorization of river-dredged sediments from Noyelles-Sous-Lens (Hauts-de-France) as a mineral addition in substitution of Portland cement, and it studied their impacts on the mechanical behavior and durability of reinforced mortars. X-ray diffraction (XRD) analysis indicated the presence of clay minerals in the raw sediment. In order to activate this clay fraction, flash calcination was applied at a temperature of 750 °C. In addition, four mixed mortars were formulated by mixing a Portland cement (CEM I 52.5 N) and the calcined sediments as a partial substitute for cement with proportions of 0%, 15%, 20%, and 30%, then stored in water tanks at room temperature (20 ± 2 °C) for 90 days in order to immerse them in a tank containing a 5% MgSO4 solution and to track the evolution of their corrosion potential as well as their mass variations every 20 days for a period of 360 days. The following additional tests were carried out on these mortars: tests of resistance to compression and flexion and to porosity by mercury intrusion. The results obtained from the majority of these tests showed that the mortar containing 15% calcined sediments is as effective and durable as the reference mortar itself. The main conclusion we can draw from these results is that the presence of these calcined sediments improves the overall behavior of the mortar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.