Abstract
Accurate measurements of black carbon concentrations in snow and ice are essential to quantify its impact on glacial melting and sequential climate forcing via snow albedo. However, snow and ice contain dust that may severely bias the precision of the elemental carbon (EC) and organic carbon (OC) measurements of filters with a thermal/optical method. To evaluate the effects of dust on black carbon analysis and to optimize filtration methods, meltwater from ice core and surface snow samples with variable dust content were filtered with different methods, including filtration of the entire material (including settling) and supernatant liquid, mechanical stirring and sonication, as well as utilization of single and double quartz filters. In this research, it is shown that dust can induce an extra decrease in optical reflectance during the 250°C heating stage in the thermal/optical method and an improper OC and EC split. To address this problem, a correction procedure was suggested and used to revise the OC a...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.