Abstract

The effect of different fiber arrangements on mechanical behavior was investigated by using both experimental study and finite elements analyses. In particular, this study examined resultant residual stresses and plastic strains of steel-fiber reinforced thermoplastic composite discs under constant convective air cooling conditions. Three composite discs were manufactured with an identical concentration of woven, circular and radial arrays. The thermal and mechanical properties of the composite discs were measured. The numerical and experimental cooling curves were converged to correctly describe the convective cooling condition of the finite element analyses. After the cooling, the residual stresses and plastic strains in each disc were compared with one another and the results were analyzed. No thermal residual stress or plastic strain was observed for the woven fiber array. Residual stress and plastic strain found in the circular fiber array was twice as high as those in the radial fiber array. It is concluded that the reinforcement fiber array of thermoplastic composites is an effective parameter to describe their thermo-mechanical properties for the formation of thermal residual stresses and plastic deformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.