Abstract

Poly(ethylene succinate) and poly(butylene succinate) are synthetic biodegradable polymers, and much attention is paid to study the properties of pure polymers and the polymers modified by different comonomers and filling materials. The literature data on the physical properties of these polymers vary widely depending on their method of preparation and subsequent modifications. Most of the studies deal with low- and moderate-molecular-weight polymers or commercial grade polymers, modified by different comonomers and chain-extension agents. The data on pure high-molecular-weight polymers are scarce. In this work, we have prepared high-molecular-weight (MW range of (1.4–1.8) × 105) poly(ethylene succinate) and poly(butylene succinate) by direct polycondensation at 200°C in a nitrogen flow without chain-extension agents. We have further studied the properties of pure polymers and examined the effect of different fillers (carbon nanotubes, SiO2, Aerosil®) on the mechanical and physical properties of these polymers. Because of high-molecular-weight, the polymers possess increased tensile and storage moduli and thermostability. Even very low filler contents (up to 1 wt %) have a pronounced influence on the polymer properties: the polymer tensile and the storage modulus increases, the elongation at break decreases, and the thermal stability of the polymers decreases slightly. The effects of fillers are less pronounced compared with those for low- and moderate-molecular-weight polymers. When mixed together, poly(ethylene succinate) and poly(butylene succinate) crystallize independently from each other as evident from the mechanical and thermal analysis data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.