Abstract

Ultra-high molecular weight polyethylene (UHMWPE)/chitin nanocrystal (CNC) fibers were prepared. Compared with the pure UHMWPE fibers, the ultimate tensile strength and Young's modulus of UHMWPE/CNC fibers are improved by 15.7% and 49.6%, respectively, with the addition of chitin nanocrystals (CNCs) of 1 wt%. The melting temperature (Tm) of UHMWPE/CNC fibers was higher than that of pure UHMWPE fibers. Pure UHMWPE fibers and UHMWPE/CNC fibers were characterized with respect to crystallinity, orientation and kebab structure by wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS) and scanning electron microscopy (SEM). It is found that the CNCs act as the shish structure in UHMWPE/CNC fibers and the kebab crystals are grown around the CNCs. There was almost no difference between pure UHMWPE fibers and UHMWPE/CNC fibers in orientation. But the degree of crystallinity of various stages of UHMWPE/CNC fibers was respectively higher than the corresponding stage of pure UHMWPE fibers. Moreover, the addition of 1 wt% CNCs improved the thickness of kebab crystals and accelerated the transformation of kebab to shish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.