Abstract
The influence of the Bauschinger Effect (BE) on the three dimensional, Mode I, Stress Intensity Factor (SIF) distributions for arrays of longitudinal coplanar, surface cracks emanating from the bore of a fully or partially autofrettaged thick-walled cylinder is investigated. The generation and comparison of the SIFs for a “realistic” - Bauschinger Effect Dependent Autofrettage (BEDA) and those for an “ideal” - Bauschinger Effect Independent Autofrettage (BEIA), which until now did not exist, is undertaken. The 3-D analysis is performed via the finite element (FE) method and the submodeling technique, employing singular elements along the crack front. Both autofrettage residual stress fields, BEDA and BEIA, are simulated using an equivalent temperature field. More than 250 different crack configurations are analyzed. SIFs for various crack densities (2c/d = 0.25–0.75), a wide range of crack depth to wall thickness ratios (a/t = 0.01–0.25), various ellipticities (a/c = 0.5–1.5), and different levels of autofrettage (ε = 30%–100%) are evaluated. The Bauschinger Effect (BE) is found to significantly lower the beneficial stress intensity factor due to autofrettage, KIA, by up to 52%, as compared to the case of “ideal” autofrettage. The reduction in KIA varies along the crack front with the maximum determined by the crack ellipticity, crack depth and crack separation distance. In some cases the maximum occurs at the deepest point of the crack and in others the maximum is at the point of intersection between the crack plane and the inner surface of the cylinder. In certain situations, the maximum transitions from one to the other as crack density increases. The detrimental influence of the BE increases as the crack density decreases and as crack depth decreases. For a partially autofrettaged cylinder, as the level of overstrain becomes smaller the influence of the BE is considerably reduced. As a result, the SIFs due to 100% BEDA differ by less than 15–17% when compared to 60% BEDA, and on the average the difference is only about 6%. Furthermore, the results indicate that crack density, and, in some cases, crack depth and crack ellipticity have opposing effects on the SIF of longitudinally coplanar crack arrays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.