Abstract

ABSTRACTThe influence of in-situ electronic perturbations on defect generation during 150 keV proton implantation into biased silicon p-n junctions has been investigated. The concentration and spatial distribution of the deep traps were characterized using a modification of the double corelation deep level transient spectroscopy technique (D-DLTS). With the in-situ electric field applied, a decrease in concentration of vacancy-related, as well as H-related, traps was observed. 500 keV He+ implantation was also performed to supplement the above studies and to differentiate any passivation effects due to hydrogen. A model based on the charge states of hydrogen and vacancies was used to explain the observed behaviour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.