Abstract

To evaluate the damage inflicted by an unshod hoof and by the various horseshoe materials (steel, aluminium and polyurethane) on the long bones of horses after a simulated kick. Sixty-four equine radii and tibiae were evaluated using a drop impact test setup. An impactor with a steel, aluminium, polyurethane, or hoof horn head was dropped onto prepared bones. An impactor velocity of 8 m/s was initially used with all four materials and then testing was repeated with a velocity of 12 m/s with the polyurethane and hoof horn heads. The impact process was analysed using a high-speed camera, and physical parameters, including peak contact force and impact duration, were calculated. At 8 m/s, the probability of a fracture was 75% for steel and 81% for aluminium, whereas polyurethane and hoof horn did not damage the bones. At 12 m/s, the probability of a fracture was 25% for polyurethane and 12.5% for hoof horn. The peak contact force and impact duration differed significantly between 'hard materials' (aluminium and steel) and 'soft materials' (polyurethane and hoof horn). The observed bone injuries were similar to those seen in analogous experimental studies carried out previously and comparable to clinical fracture cases suggesting that the simulated kick was realistic. The probability of fracture was significantly higher for steel and aluminium than for polyurethane and hoof horn, which suggests that the horseshoe material has a significant influence on the risk of injury for humans or horses kicked by a horse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.