Abstract

PurposeThe purpose of this paper is to investigate in detail the effects of acid treatment on multi‐walled carbon nanotubes (MWNTs), which could find a variety of applications in coatings and composites.Design/methodology/approachA number of analytical techniques, including Fourier transform infrared spectroscopy (FT‐IR), X‐ray photoelectron spectroscopy (XPS), Raman spectroscopy (Raman), and scanning electron microscopy (SEM), were employed to assess the effects of acid treatment on MWNTs.FindingsIt was found that desirable modifications to MWNTs occurred after acid treatment. Thus, carboxylic acid groups were introducing on to the surface of MWNTs. It was also found that both chemical and physical properties of MWNTs could be modified/altered.Practical implicationsThe investigation established a method to modify MWNTs via acid treatment and the effects of such a treatment on MWNTs in detail. The modified MWNTs can be used for various applications and further modifications. The acid treated and the further modified MWNTs can be dispersed into polymers to prepare polymer/MWNTs composite materials and composite surface coatings. Some properties of the resulting composites were improved by the dispersed MWNTs, giving excellent mechanical, electrical, thermal and magnetic properties.Originality/valueThe finding on the effects of acid treatment on MWNTs, supported by detailed FT‐IR, XPS, Raman and SEM data, would be of interest to the field. The modification technique provided a route to further modification of carbon nanotubes. The acid treated and the further modified MWNTs are useful for preparation of polymer/MWNTs composite materials and composites surface coatings with improved mechanical, electrical, thermal and magnetic properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.