Abstract

Unlike ideal 180° ferroelectric walls that are a unit cell wide (∼0.5 nm), real walls in ferroelectrics have been reported to be many nanometers wide (1–10 nm). Using scanning nonlinear dielectric microscopy of lithium niobate (LiNbO3) and lithium tantalate (LiTaO3) ferroelectrics, we show that the wall width at surfaces can vary considerably and even reach ∼100 nm in places where polar defects adjoin a wall. The consequence of such variable wall widths is investigated on the specific property of threshold field required for wall motion. Using microscopic phase-field modeling, we show that the threshold field for moving an antiparallel ferroelectric domain wall dramatically drops by two to three orders of magnitude if the wall was diffuse by only ∼1–2 nm, which agrees with experimental wall widths and threshold fields for these materials. Modeling also shows that wall broadening due to its intersection with a surface will influence the threshold field for wall motion only for very thin films (1–10 nm) where the surface broadening influences the bulk wall width. Such pre-existing and slightly diffuse domain walls with low threshold fields for wall motion may offer a general mechanism to explain significantly lower experimental coercive fields for domain reversal in ferroelectrics as compared to the thermodynamic predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.