Abstract
Let $$Z=G/H$$ be the homogeneous space of a real reductive group and a unimodular real spherical subgroup, and consider the regular representation of G on $$L^2(Z)$$ . It is shown that all representations of the discrete series, that is, the irreducible subrepresentations of $$L^2(Z)$$ , have infinitesimal characters which are real and belong to a lattice. Moreover, let K be a maximal compact subgroup of G. Then each irreducible representation of K occurs in a finite set of such discrete series representations only. Similar results are obtained for the twisted discrete series, that is, the discrete components of the space of square integrable sections of a line bundle, given by a unitary character on an abelian extension of H.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.