Abstract
The bounded real lemma (BRL) is a classical result in systems theory, which provides a linear matrix inequality criterium for dissipativity, via the Kalman-Yakubovich-Popov (KYP) inequality. The BRL has many applications, among others in H^infty control. Extensions to infinite dimensional systems, although already present in the work of Yakubovich, have only been studied systematically in the last few decades. In this context various notions of stability, observability and controllability exist, and depending on the hypothesis one may have to allow the KYP-inequality to have unbounded solutions which forces one to consider the KYP-inequality in a spatial form. In the present paper we consider the BRL for continuous time, infinite dimensional, linear well-posed systems. Via an adaptation of Willems’ storage function approach we present a unified way to address both the standard and strict forms of the BRL. We avoid making use of the Cayley transform and work only in continuous time. While for the standard bounded real lemma, we obtain analogous results as there exist for the discrete time case, when treating the strict case additional conditions are required, at least at this stage. This might be caused by the fact that the Cayley transform does not preserve exponential stability, an important property in the strict case, when transferring a continuous-time system to a discrete-time system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.