Abstract
Let K be the field of fractions of a Henselian discrete valuation ring ${{\mathcal {O}}_{K}}$ . Let X K /K be a smooth proper geometrically connected scheme admitting a regular model $X/{{\mathcal {O}}_{K}}$ . We show that the index δ(X K /K) of X K /K can be explicitly computed using data pertaining only to the special fiber X k /k of the model X. We give two proofs of this theorem, using two moving lemmas. One moving lemma pertains to horizontal 1-cycles on a regular projective scheme X over the spectrum of a semi-local Dedekind domain, and the second moving lemma can be applied to 0-cycles on an $\operatorname {FA} $ -scheme X which need not be regular. The study of the local algebra needed to prove these moving lemmas led us to introduce an invariant γ(A) of a singular local ring $(A, {\mathfrak {m}})$ : the greatest common divisor of all the Hilbert-Samuel multiplicities e(Q,A), over all ${\mathfrak {m}}$ -primary ideals Q in ${\mathfrak {m}}$ . We relate this invariant γ(A) to the index of the exceptional divisor in a resolution of the singularity of $\operatorname {Spec}A$ , and we give a new way of computing the index of a smooth subvariety X/K of ${\mathbb{P}}^{n}_{K}$ over any field K, using the invariant γ of the local ring at the vertex of a cone over X.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.