Abstract
In this paper, we study the regularizing properties of the conditional stability estimates in ill-posed problems. First, we analyze how conditional stability estimates occur, and which properties the corresponding index functions must obey. In addition, we adapt the convergence analysis for the Tikhonov regularization in Banach spaces where the difference between the approximated solution and the exact one in metric measure is taken into account. We conclude this study with a comparison of stability estimates and variational inequalities, another emerging tool in Banach space regularization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.