Abstract

The bactericidal potency of a synthetic peptide (CG 117–136) of human lysosomal cathepsin G (cat G) can be substantially increased by covalent attachment to its N- or C-termini, of saturated, linear fatty acids (FAs), namely those with C-8, C-10 and C-12 hydrocarbon chains. In order to understand better the mechanism by which FA moieties increase the bactericidal activity of CG 117–136, the interaction of N-terminally FA-modified peptides with artificial membranes was studied. First, the content of secondary structure motifs in the modified and unmodified peptides was determined by circular dichroism (CD). A marked increase in the propensity of FA-modified CG 117–136 to form an α-helix structure was observed for the C-8, C-10 and C-12 derivatives compared with unmodified/short-chain and long-chain (C-14, C-16, C-18) derivatives. These effects were observed both in the presence of large unilamellar liposomes or in trifuluoroethanol, a membrane-stimulating agent. Second, the capacity of peptides to insert into large unilamellar liposomes as a function of FA length was determined by their ability to release a trapped fluorescent dye. FA derivatives with the highest α-helical content were found to be the most effective in releasing a fluorescent dye, compared with an unmodified peptide and/or derivatives having a low α-helical content. The ability of the peptides to attain α-helical structure in the membrane-like environment and the ability to disrupt the liposomal membrane, therefore correlate remarkably well with their increased ability to kill bacteria. A plausible explanation for improved bactericidal action of the modified peptide is that the FA moiety facilitates formation of the peptide with an α-helical structure formation in membranes, which is essential for disrupting the integrity of the bacterial cytoplasmic membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.