Abstract

In this study, the titanium dioxide (TiO2) photoelectrode of a dye-sensitized solar cell (DSSC) was fabricated into a double-layer structure, which was made up of a TiO2/graphene/magnetic bead layer and a TiO2 layer by the spin coating method and electrophoretic deposition. The effects of graphene and magnetic bead for photovoltaic performances of the DSSC were investigated by X-ray diffraction, solar simulator, ultra-violet (UV)-visible spectrometer, and electrochemical impedance spectroscopy. According to the experimental results, graphene had the higher specific surface area to improve the dye loading of the DSSC and magnetic bead used its ability for dispersion and charge transfer to enhance the electron transportation in the DSSC, which made the photovoltaic conversion efficiency of DSSC achieve 5.70%. Moreover, DSSC with incorporation of graphene and magnetic bead was combined with electrochemical capacitor, which had the specific capacitance of 4.15 F/g to store energy from DSSC. Then, the electricity stored from electrochemical capacitor was used to drive the light-emitting diode (LED) for work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.