Abstract

The Pfeiffer effect is observed when an optically active compound such as an amino acid is introduced to a solution containing a labile racemic metal complex, and an equilibrium shift is obtained. The “perturbation” results in an excess of one enantiomer over the other. The shift is a result of a preferential outer sphere interaction between the introduced chiral species and one enantiomeric form (Λ or Δ) of a labile metal complex. Speculations regarding the mechanism of the Pfeiffer effect have attributed observations to a singular factor such as pH, solvent polarity, or numerous other intermolecular interactions. Through the use of the lanthanide(III) complexes [Tb(DPA)3]3− and [Eu(DPA)3]3− (where DPA = 2,6-pyridinedicarboxylate) and the amino acids l-serine and l-proline; it is becoming clear that the mechanism is not so simply described as per the preliminary findings that are discussed in this study. It appears that the true mechanism is far more complicated than the attribute just a singular factor. This work attempts to shine light on the fact that understanding the behavior of the solvent environment may hypothetically be the key to offering a more detailed description of the mechanism.

Highlights

  • Chirality is an important phenomenon that occurs naturally in many of the biological mechanisms that are essential to life

  • The starting materials consisting of terbium(III) and europium(III) chlorides, DPA, L-serine, NaCl, and KCl were purchased from commercial chemical distributers

  • The presence of hydrophobic substituents on the solvents that were included in this work were necessary to cause a significant perturbation in the complex equilibrium

Read more

Summary

Introduction

Chirality is an important phenomenon that occurs naturally in many of the biological mechanisms that are essential to life. The secondary structures of enzymes and proteins contain chiral amino acids. These amino acids are most often found within the active sites of biologically important enzymes. These active sites are what bind the incoming substrate. A substrate with the wrong “fit”, or more the incorrect enantiomer of a substrate, can prove to be disastrous for the enzyme to which it binds. There is the potential that the entire biological system as a whole is affected by this as well

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.