Abstract
The Canterbury mudfish Neochanna burrowsius was found to be a pseudo-aestivating galaxiid with a low metabolic rate and significant cutaneous oxygen uptake (c. 43%) in both air and water. Another galaxiid, inanga Galaxias maculatus, had a higher metabolic rate in both media but the proportion of oxygen uptake met by cutaneous respiration rose significantly from 38 to 63% when the fish were exposed to air. Besides its important role in oxygen uptake, the skin of both species also contributed significantly to excretion of carbon dioxide in air, indicating the critical role of the integument as a respiratory tissue. In air, G. maculatus may increase cutaneous gas exchange to meet metabolic demands owing to the reduced utility of the gills, but as emersed G. maculatus were only able to maintain metabolic rates at c. 67% of that measured in water, this strategy probably only permits short-term survival. By contrast, the low and unchanging metabolic rate in water and air in N. burrowsius is a feature that may facilitate tolerance of long periods of emersion in the desiccating environments they inhabit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.