Abstract

Families of edge transitive algebraic graphs defined over finite commutative rings were used for the development of stream ciphers, public key cryptosystems and key exchange protocols. We present the results of the first implementation of a public key algorithm based on the family of algebraic graphs, which are not edge transitive. The absence of an edge transitive group of symmetries means that the algorithm can not be described in group theoretical terms. We hope that it licates cryptanalysis of the algorithm. We discuss the connections between the security of algorithms and the discrete logarithm problem. The plainspace of the algorithm is Kn, where K is the chosen commutative ring. The graph theoretical encryption corresponds to walk on the bipartite graph with the partition sets which are isomorphic to Kn. We conjugate the chosen graph based encryption map, which is a composition of several elementary cubical polynomial automorphisms of a free module Kn with special invertible affine transformation of Kn. Finally we compute symbolically the corresponding cubic public map g of Kn onto Kn. We evaluate time for the generation of g, and the number of monomial expression in the list of corresponding public rules.

Highlights

  • We implement the algorithm proposed in [1]

  • In publications [3], [4] some implementations of stream ciphers and public key algorithms based on an explicit construction of families of algebraic graphs

  • It was shown that for each finite commutative ring K we can create a cubical polynomial map f of Kn onto Kn depending on a string of

Read more

Summary

Introduction

We implement the algorithm proposed in [1]. It is based on the family of graphs A(n, K) which were introduced in [2]. In publications [3], [4] some implementations of stream ciphers and public key algorithms based on an explicit construction of families of algebraic graphs The families of directed graphs of large girth

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.