Abstract

New yttrium substituted manganese ferrite (MnYxFe2-xO4) nanoparticles (NPs) were prepared by low cost reverse micelle micro-emulsion method by utilizing cheap raw materials like Paraffin, Triton X-100, and 1-butanol and corresponding metal salts. The Y3+content (x) range was kept 0 ≤ x ≤ 0.16. Thermogravimetric analysis (TGA) of un-annealed precipitates was carried out to probe the phase formation temperature. The annealing of precipitates of all compositions of MnYxFe2-xO4 nanoparticles was carried at 400 °C for 4 h (h). The annealing was carried out under vacuum to control the oxidation of manganese. The effect of Y3+ cations on structural, spectral and dielectric properties was investigated by X-ray diffraction (XRD), Fourier Transform Infra-Red (FTIR) spectroscopy and impedance analyzer measurements at room temperature. XRD patterns confirmed the formation of MnFe2O4 and its derivatives with yttrium. Site radii and bond lengths were calculated from XRD data. FTIR spectra confirmed the tetrahedral (A) and octahedral (B) sites in all compositions of MnYxFe2-xO4 nanoparticles, which is characteristic of spinel ferrites having FCC (face centered cubic) structure. Scanning electron microscopic (SEM) analysis confirmed the spherical morphology of ferrite particles. Dielectric parameters analysis in the frequency range from 1 × 106 Hz to 3 × 109 Hz suggested that these ferrite particles may find their potential applications in high frequency devices fabrication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.