Abstract
This paper presents a study on the effectiveness of texture analysis of remote sensing imagery depending on the type and spatial resolution of the source image. The study used the following image types: near-infrared band, red band, first principal component, second principal component and normalized difference vegetation index images of pixel size from 2 m to 30 m, generated from a multispectral WorldView-2 image. The study evaluated the separability of the selected pairs of the following land cover classes: bare soil, low vegetation, coniferous forest, deciduous forest, water reservoirs, built-up areas. The tool used for texture analysis was granulometric analysis based on morphological operations—one of less popular methods which, however, as demonstrated by previous studies, shows high effectiveness in separating classes of different texture. The conducted study enabled researchers to evaluate the significance of image type and resolution for visibility of texture in the image and the possibility of using texture to differentiate between classes. The obtained results showed that there is no single, universal combination of conditions of texture analysis, which would be the best from the point of view of all classes. For most of the analyzed pairs of classes, the best results were obtained for the highest spatial resolution of the image (2–3 m), but the class of built-up areas stands out in this comparison—the best distinction was obtained with the average spatial resolution (10–15 m). Research has also shown that there is no single type of image that is universally the best basis for texture analysis. While for the majority of classes the image of the first principal component was the best, for the class of built-up areas it was the image of the red channel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.