Abstract

Abstract Several numerical experiments have been conducted using the NCAR Community Atmosphere Model, version 3 (CAM3) to examine the impact of the time step on rainfall in the intertropical convergence zone (ITCZ) in an aquaplanet. When the model time step was increased from 5 to 60 min the rainfall in the ITCZ decreased substantially. The impact of the time step on the ITCZ rainfall was assessed for a fixed spatial resolution (T63 with L26) for the semi-Lagrangian dynamical core (SLD). The increase in ITCZ rainfall at higher temporal resolution was primarily a result of the increase in large-scale precipitation. This increase in rainfall was caused by the positive feedback between surface evaporation, latent heating, and surface wind speed. Similar results were obtained when the semi-Lagrangian dynamical core was replaced by the Eulerian dynamical core. When the surface evaporation was specified, changes in rainfall were largely insensitive to temporal resolution. The impact of temporal resolution on rainfall was more sensitive to the latitudinal gradient of SST than to the magnitude of SST.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.