Abstract

The assessment of long-term effects of forest management practices, particularly species mixing and stand density, provides valuable information for the forestry sectors. This study evaluated and compared the effect of stand composition and density on organic horizon (i.e., OL, OF, OH) and organo-mineral horizon characteristics of nine stands in the Orleans State Forest (France), seven years after the first thinning treatments. To this end, three triplets of stands of pure Quercus petraea Matt., pure Pinus sylvestris L. and a mixture of both species were selected. Each stand consisted of two plots with different tree densities: low and normal. Physicochemical variables were measured on the organic humus horizon (OH), while microbial biomass carbon (MBC) and nitrogen (MBN), and soil microbial metabolic profile were evaluated on the organo-mineral horizon; the abundance of soil microbial populations (i.e., bacteria, fungi and archaea) in each plot was also assessed by qPCR. The OH thickness consistently increased under pure pine stands (25–35 mm), while other OH characteristics showed no variation based on stand composition and tree density. Low-density plots exhibited changes in microbial biomass, with a significant decrease in both MBC and MBN. Moreover, the highest MBC was recorded under pure pine stands (1241 mg C.kg−1 DW soil), and the highest MBN under pure oak stands (24–39 mg N.kg−1 DW soil). The highest C assimilation rates were recorded in the mixed stands, especially under low tree density. Bacteria and archea were similarly abundant across stand compositions and tree densities, while fungi tended to be more abundant in the mixed coniferous-broadleaf stands. Our findings should be considered by the forestry sectors of European countries where these two species are distributed, and suggest that EU forestry strategies should promote biodiversity in the context of tree plantations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.