Abstract

Assessment of the viability of enhanced gas recovery (EGR), in which CO2 is injected into natural gas reservoirs, requires accurate and appropriate reservoir simulations. These necessitate provision of parameters describing dispersion between the fluids. Here we systematically measure fluid dispersion in various rock cores (sandstones and carbonates), both dry and at irreducible water saturation, at reservoir conditions. In this manner we evaluate the impact of the irreducible water on the miscible displacement processes. As such this represents the first measurement of dispersion as a function of water saturation for supercritical gases in consolidated media. Complementary measurements of water spatial distribution along the rock axis, as well as the pore size distribution occupied by the water were performed using magnetic resonance techniques. Irreducible water was found to increase dispersivity by a factor of up to 7.3. The dispersion coefficient (K) was measured as a function of velocity and the data for both dry and water-containing samples were successfully combined on a K–Péclet number (Pe) plot, enabling ready future inclusion into EGR reservoir models. The power-law dependence of K upon Pe produced an exponent of 1.2 for dry and water-saturated sandstones and 1.4 for dry and water-saturated carbonates, consistent with literature results (Bijeljic et al., 2011; Honari et al., 2015).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.