Abstract

Power consumption and heat dissipation issues are pushing the microprocessors industry towards multicore design patterns. Given the cubic dependence between core frequency and power consumption, multicore technologies leverage the idea that doubling the number of cores and halving the cores frequency gives roughly the same performance reducing the power consumption by a factor of four. With the number of cores on multicore chips expected to reach tens in a few years, efficient implementations of numerical libraries using shared memory programming models is of high interest. The current message passing paradigm used in ScaLAPACK and elsewhere introduces unnecessary memory overhead and memory copy operations, which degrade performance, along with the making it harder to schedule operations that could be done in parallel. Limiting the use of shared memory to fork-join parallelism (perhaps with OpenMP) or to its use within the BLAS does not address all these issues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.