Abstract

Abstract Modes of climate variability can drive significant changes to regional climate affecting extremes such as droughts, floods, and bushfires. The need to forecast these extremes and expected future increases in their intensity and frequency motivates a need to better understand the physical processes that connect climate modes to regional precipitation. Focusing on east Australia, where precipitation is driven by multiple interacting climate modes, this study provides a new perspective into the links between large-scale modes of climate variability and precipitation. Using a Lagrangian back-trajectory approach, we examine how El Niño–Southern Oscillation (ENSO) modifies the supply of evaporative moisture for precipitation, and how this is modulated by the Indian Ocean dipole (IOD) and southern annular mode (SAM). We demonstrate that La Niña modifies large-scale moisture transport together with local thermodynamic changes to facilitate local precipitation generation, whereas below-average precipitation during El Niño stems predominantly from increased regional subsidence. These dynamic–thermodynamic processes were often more pronounced during co-occurring La Niña/negative IOD and El Niño/positive IOD periods. As the SAM is less strongly correlated with ENSO, the impact of co-occurring ENSO and SAM largely depended on the state of ENSO. La Niña–related processes were exacerbated when combined with +SAM and dampened when combined with −SAM, and vice versa during El Niño. This new perspective on how interacting climate modes physically influence regional precipitation can help elucidate how model biases affect the simulation of Australian climate, facilitating model improvement and understanding of regional impacts from long-term changes in these modes. Significance Statement How climate modes modulate the oceanic and terrestrial sources of moisture for rainfall in east Australia is investigated. East Australia is wetter during La Niña because more moisture is transported into the region and is more easily turned into rainfall when it arrives, whereas drier conditions during El Niño are because local conditions inhibit the conversion of moisture into rainfall. Distant atmospheric changes over the Indian and Southern Oceans can intensify these changes. Our results can be used to better understand and predict the regional impact of long-term changes in these modes of climate variability, which are potentially altered under climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.