Abstract

BackgroundThe present study aimed at developing a standardized heat wave definition to estimate and compare the impact on mortality by gender, age and death causes in Europe during summers 1990-2004 and 2003, separately, accounting for heat wave duration and intensity.MethodsHeat waves were defined considering both maximum apparent temperature and minimum temperature and classified by intensity, duration and timing during summer. The effect was estimated as percent increase in daily mortality during heat wave days compared to non heat wave days in people over 65 years. City specific and pooled estimates by gender, age and cause of death were calculated.ResultsThe effect of heat waves showed great geographical heterogeneity among cities. Considering all years, except 2003, the increase in mortality during heat wave days ranged from + 7.6% in Munich to + 33.6% in Milan. The increase was up to 3-times greater during episodes of long duration and high intensity. Pooled results showed a greater impact in Mediterranean (+ 21.8% for total mortality) than in North Continental (+ 12.4%) cities. The highest effect was observed for respiratory diseases and among women aged 75-84 years. In 2003 the highest impact was observed in cities where heat wave episode was characterized by unusual meteorological conditions.ConclusionsClimate change scenarios indicate that extreme events are expected to increase in the future even in regions where heat waves are not frequent. Considering our results prevention programs should specifically target the elderly, women and those suffering from chronic respiratory disorders, thus reducing the impact on mortality.

Highlights

  • Several studies in the United States and Europe have shown marked short-term increases in the number of deaths during heat waves, the role of these extreme events on mortality needs to be better clarified [1]

  • Climate change projections for Europe show that over the century, heat waves will become more frequent, intense and will last longer, in Mediterranean regions, and in Northern areas currently not characterized by heat wave events [2]

  • The present paper presents the main results of the EuroHEAT project (Improving Public Health Responses to extreme weather/heat-waves), which aimed to develop a standardized definition of a heat wave event and to compare the impact of heat waves in European cities

Read more

Summary

Introduction

Several studies in the United States and Europe have shown marked short-term increases in the number of deaths during heat waves, the role of these extreme events on mortality needs to be better clarified [1]. Climate change projections for Europe show that over the century, heat waves will become more frequent, intense and will last longer, in Mediterranean regions, and in Northern areas currently not characterized by heat wave events [2]. These changes could contribute to the burden of disease and premature deaths, in vulnerable populations with limited adaptation resources [3]. The present study aimed at developing a standardized heat wave definition to estimate and compare the impact on mortality by gender, age and death causes in Europe during summers 1990-2004 and 2003, separately, accounting for heat wave duration and intensity

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.