Abstract

In this study, a dynamically-controlled column was used to evaluate two ores known to cause heap overheating. This enabled the simulation of heap self-heating under controlled conditions. The lixiviant was inoculated with a consortia of mesophilic and moderately thermophilic microorgaisms, and the impact of rapid temperature increases on biological activity and cell numbers was evaluated. During the leaching of ore sample A, the temperature lagged for 29 days before increasing rapidly from 26 to 88 °C. Cell numbers and solution potential increased concomitantly, before both were reduced as the temperature increased past maximum microbial tolerances. Cell numbers began increasing again within 10 days of reaching temperatures that would facilitate mesophilic growth being restored. During the leaching of ore B, the temperature lagged for 4 days before exhibiting a rapid increase in temperature, increasing from 30 to 76 °C over a six-day period. Cell numbers were reduced with the sudden temperature increase, and did not recover over the remainder of the experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.