Abstract

Amorphous carbon thin films were prepared by direct current hollow cathode sputter deposition in Ar discharge with the injection of small amounts of H2 and/or N2. The influence of these additives on the film properties with particular focus on the application as a coating for electron cloud mitigation in particle accelerators is characterized by optical spectroscopy, X-ray photoelectron spectroscopy, and secondary electron yield (SEY) measurements. The SEY maximum increased from initially 0.98 with pure Ar in the gas discharge up to 1.38 at 0.5% H2 while the addition of 1% of pure N2 enabled to reduce it to 0.88. The simultaneous addition of N2 to the H2 containing discharge allowed an average SEY maximum reduction of 20%. The optical bandgap revealed a correlation between the increase/decrease of the bandgap and the SEY increment/reduction for H2/N2 addition. The surface composition changes and the resulting modification of the sp2/sp3 ratio correlate with the changes in SEY and optical properties. The obtained results highlight the potential of intentionally injected N2 to counteract the detrimental effect of the inevitable H2 partial pressure in the coating systems during the production of amorphous carbon thin films for anti-multipacting applications in particle accelerators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.