Abstract

It has been reported that cobalt aluminate formation is a cause of deactivation during Fischer–Tropsch synthesis (FTS), as it forms at the expense of active cobalt and is irreducible during FTS. To study this quantitatively, wax-coated Co/Pt/Al 2O 3 catalyst samples were removed periodically from an extended demonstration reactor FTS run operated at commercially relevant conditions and analysed with X-ray Absorption Near Edge Spectroscopy (XANES). With XANES, wax protected spent samples could be analysed in a “pseudo in-situ” mode. Under commercially relevant FTS conditions the catalyst undergoes reduction and minimal amounts of cobalt aluminate were found. It is proposed that the cobalt aluminate is formed from the residual CoO present in the catalyst after reduction. Additionally, the formation of aluminate was investigated with XANES and X-ray photoelectron spectroscopy (XPS) and TPR-MS on catalysts taken from laboratory continuous stirred tank reactor (CSTR) runs with varying water partial pressure (1–10 bar). Even at high water partial pressures ( P H 2 O = 10 bar , P H 2 O / P H 2 = 2.2 ) only around 10% cobalt aluminate is formed while the metallic fraction of cobalt still increased compared to the fresh catalyst. The work shows that cobalt aluminate formation during FTS at realistic conditions is not a major deactivation mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.