Abstract

The efficacy of antifouling coatings designed to minimise the release of biocide, either by embedded (non-covalent) or tethered (covalently bonded) biocides, relies on sufficient bioavailability of the active compound upon contact between the organism and the coating. This investigation is focused on whether coating hardness affects the efficacy of embedded coating systems. Two experimental, non-eroding and waterborne latex paint formulations composed mainly of polystyrene (PS) or polyvinyl versatate (PV) were chosen for their difference in mechanical properties measured in terms of Buchholz indentation resistance. Ivermectin was added to both formulations to a final concentration of 0.1% (w/v) and the steady state release rate was measured according to ISO 15181 at between 34 and 70 ng cm−2 day−1 for both formulations. Field trials conducted over 3 months showed significant differences in anti-barnacle efficacy between the formulations despite their similar release profiles. The softer PV coating showed complete anti-barnacle efficacy, ie no barnacles were detected, while the harder PS coating showed no efficacy against barnacle colonisation during the same time period. The results indicate a new antifouling strategy whereby a route of intoxication is triggered by the organism itself upon interaction with the coating and its embedded biocide. This finding opens new possibilities in controlling macrofouling by low emission antifouling coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.