Abstract

ObjectivesAutoimmune diseases are a heterogeneous group of diseases which lose the immunological tolerance to self‐antigens. It is well recognized that irregularly provoked T cells participate in the pathological immune responses. As a novel nanomaterial with promising applications, tetrahedral framework nucleic acid (TFNA) nanostructure was found to have immune regulatory effects on T cells in this study.Materials and MethodsTo verify the successful fabrication of TFNA, the morphology of TFNA was observed by atomic force microscopy (AFM) and dynamic light scattering. The regulatory effect of TFNA was evaluated by flow cytometry after cocultured with CD3+ T cells isolated from healthy donors. Moreover, the associated signaling pathways were investigated. Finally, we verified our results on the T cells from patients with neuromyelitis optica spectrum disorder (NMOSD), which is a typical autoimmune disease induced by T cells.ResultsWe revealed the alternative regulatory functions of TFNA in human primary T cells with steady status via the JNK signaling pathway. Moreover, by inhibiting both JNK and ERK phosphorylation, TFNA exhibited significant suppressive effects on IFNγ secretion from provoking T cells without affecting TNF secretion. Similar immune regulatory effects of TFNA were also observed in autoreactive T cells from patients with NMOSD.ConclusionsOverall, our results revealed a potential application of TFNA in regulating the adaptive immune system, as well as shed a light on the treatment of T cell–mediated autoimmune diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.